Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add filters

Document Type
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.04.15.24305820

ABSTRACT

Precision medicine offers a promising avenue for better therapeutic responses to pandemics such as COVID-19. This study leverages independent patient cohorts in Florence and Liege gathered under the umbrella of the DRAGON consortium for the stratification of molecular phenotypes associated with COVID-19 using topological analysis of global blood gene expression. Whole blood from 173 patients was collected and RNA was sequenced on the Novaseq platform. Molecular phenotypes were defined through topological analysis of gene expression relative to the biological network using the TopMD algorithm. The two cohorts from Florence and Liege allowed for independent validation of the findings in this study. Clustering of the topological maps of differential pathway activation revealed three distinct molecular phenotypes of COVID-19 in the Florence patient cohort, which were also observed in the Liege cohort. Cluster 1, was characterised by high activation of pathways associated with ESC pluripotency, NRF2, and TGF-B; receptor signalling. Cluster 2 displayed high activation of pathways including focal adhesion-PI3K-Akt-mTOR signalling and type I interferon induction and signalling, while Cluster 3 exhibited low IRF7-related pathway activation. TopMD was also used with the Drug-Gene Interaction Database (DGIdb), revealing pharmaceutical interventions targeting mechanisms across multiple phenotypes and individuals. The data illustrates the utility of molecular phenotyping from topological analysis of blood gene expression, and holds promise for informing personalised therapeutic strategies not only for COVID-19 but also for Disease X. Its potential transferability across multiple diseases highlights the value in pandemic response efforts, offering insights before large-scale clinical studies are initiated.


Subject(s)
COVID-19
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.18.533280

ABSTRACT

SARS-CoV-2 emerged into the human population in late 2019 and human to human transmission has dominated the evolutionary landscape and driven the selection of different lineages. The first major change that resulted in increased transmission was the D614G substitution in the spike protein. This was accompanied by the P323L substitution in the viral RNA dependent RNA polymerase (RdRp) (NSP12). Together, with D614G these changes are the root of the predominant global SARS-CoV-2 landscape. Here, we found that NSP12 formed an interactome with cellular proteins. The functioning of NSP12 was dependent on the T-complex protein Ring Complex, a molecular chaperone. In contrast, there was differential association between NSP12 variants and components of a phosphatase complex (PP2/PP2A and STRN3). Virus expressing NSP12L323 was less sensitive to perturbations in PP2A and supports the paradigm that ongoing genotype to phenotype adaptation of SARS-CoV-2 in humans is not exclusively restricted to the spike protein.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.26.474085

ABSTRACT

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The B.1.1.529 Omicron variant is rapidly emerging and has been designated a Variant of Concern (VOC). The variant is highly transmissible and partially or fully evades a spectrum of neutralising antibodies due to a high number of substitutions in the spike glycoprotein. A major question is the relative severity of disease caused by the Omicron variant compared with previous and currently circulating variants of SARS-CoV-2. To address this, a mouse model of infection that recapitulates severe disease in humans, K18-hACE2 mice, were infected with either a Pango B, Delta or Omicron variant of SARS-CoV-2 and their relative pathogenesis compared. In contrast to mice infected with Pango B and Delta variant viruses, those infected with the Omicron variant had less severe clinical signs (weight loss), showed recovery and had a lower virus load in both the lower and upper respiratory tract. This is also reflected by less extensive inflammatory processes in the lungs. Although T cell epitopes may be conserved, the antigenic diversity of Omicron from previous variants would suggest that a change in vaccine may be required to mitigate against the higher transmissibility and global disease burden. However, the lead time to develop such a response may be too late to mitigate the spread and effects of Omicron. These animal model data suggest the clinical consequences of infection with the Omicron variant may be less severe but the higher transmissibility could still place huge burden upon healthcare systems even if a lower proportion of infected patients are hospitalised.


Subject(s)
Infections , COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.23.474030

ABSTRACT

The mutational landscape of SARS-CoV-2 varies at both the dominant viral genome sequence and minor genomic variant population. An early change associated with transmissibility was the D614G substitution in the spike protein. This appeared to be accompanied by a P323L substitution in the viral polymerase (NSP12), but this latter change was not under strong selective pressure. Investigation of P323L/D614G changes in the human population showed rapid emergence during the containment phase and early surge phase of wave 1 in the UK. This rapid substitution was from minor genomic variants to become part of the dominant viral genome sequence. A rapid emergence of 323L but not 614G was observed in a non-human primate model of COVID-19 using a starting virus with P323 and D614 in the dominant genome sequence and 323L and 614G in the minor variant population. In cell culture, a recombinant virus with 323L in NSP12 had a larger plaque size than the same recombinant virus with P323. These data suggest that it may be possible to predict the emergence of a new variant based on tracking the distribution and frequency of minor variant genomes at a population level, rather than just focusing on providing information on the dominant viral genome sequence e.g., consensus level reporting. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.23.469695

ABSTRACT

Background: The UK Medicines and Regulatory Healthcare Agency (MHRA) have recently licensed the anti-viral drug, molnupiravir, for use in patients with mild-moderate COVID-19 disease with one or more risk factors for serious illness. Treatment with anti-viral drugs is best initiated early to prevent progression to severe disease, although the therapeutic window for intervention has not yet been fully defined. Objectives: This study aimed to determine the activity of the molnupiravir parent drug (NHC) to different SARS-CoV-2 Variants of Concern (VoCs), and to establish the therapeutic window in human lung cell model. Methods: Dose response assays were performed in parallel to determine the IC50 (the concentration of drug required to inhibit virus titre by 50%) of NHC against different variants. Human ACE-2 A549 cells were treated with NHC at different time points either before, during or after infection with SARS-CoV-2. Results: Here we demonstrate that {beta}-D-N4-hydroxycytidine (NHC), the active metabolite of molnupiravir, has equivalent activity against four variants of SARS-CoV-2 in a human lung cell line ranging 0.04-0.16M IC50. Furthermore, we demonstrate that activity of the drug begins to drop after 48 hours post-infection. Conclusions: One of the main advantages of molnupiravir is that it can be administered orally, and thus given to patients in an out-patient setting. These results support giving the drug early on after diagnosis or even in prophylaxis for individuals with high risk of developing severe disease.


Subject(s)
COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.23.449594

ABSTRACT

Companion animals are susceptible to SARS-CoV-2 infection and sporadic cases of pet infections have occurred in the United Kingdom. Here we present the first large-scale serological survey of SARS-CoV-2 neutralising antibodies in dogs and cats in the UK. Results are reported for 688 sera (454 canine, 234 feline) collected by a large veterinary diagnostic laboratory for routine haematology during three time periods; pre-COVID-19 (January 2020), during the first wave of UK human infections (April-May 2020) and during the second wave of UK human infections (September 2020-February 2021). Both pre-COVID-19 sera and those from the first wave tested negative. However, in sera collected during the second wave, 1.4% (n=4) of dogs and 2.2% (n=2) cats tested positive for neutralising antibodies. The low numbers of animals testing positive suggests pet animals are unlikely to be a major reservoir for human infection in the UK. However, continued surveillance of in-contact susceptible animals should be performed as part of ongoing population health surveillance initiatives.


Subject(s)
COVID-19
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.30.437704

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the regional and global sequence landscapes. Several variants have been labelled as Variants of Concern (VOCs) because of perceptions or evidence that these may have a transmission advantage, increased risk of morbidly and/or mortality or immune evasion in the context of prior infection or vaccination. Placing the VOCs in context and also the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Sequences of SARS-CoV-2 in nasopharyngeal swabs from hospitalised patients in the UK were determined and virus isolated. The data indicated the virus existed as a population with a consensus level and non-synonymous changes at a minor variant. For example, viruses containing the nsp12 P323L variation from the Wuhan reference sequence, contained minor variants at the position including P and F and other amino acids. These populations were generally preserved when isolates were amplified in cell culture. In order to place VOCs B.1.1.7 (the UK Kent variant) and B.1.351 (the South African variant) in context their growth was compared to a spread of other clinical isolates. The data indicated that the growth in cell culture of the B.1.1.7 VOC was no different from other variants, suggesting that its apparent transmission advantage was not down to replicating more quickly. Growth of B.1.351 was towards the higher end of the variants. Overall, the study suggested that studying the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants.


Subject(s)
COVID-19 , Infections
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.03.433753

ABSTRACT

Introduction: SARS-CoV-2 has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgRNAs has a unique 5 sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS-junction), that can be identified using sequencing. Results: High resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS-junctions and be used as a proxy to quantify sgmRNAs for understanding virus biology. This was tested on published datasets and clinical samples from patients and longitudinal samples from animal models with COVID-19. Discussion: LeTRS identified known leader-TRS-junctions and identified novel species that were common across different species. The data indicated multi-phasic abundance of sgmRNAs in two different animal models, with spikes in sgmRNA abundance reflected in human samples, and therefore has implications for transmission models and nucleic acid-based diagnostics.


Subject(s)
COVID-19
12.
Jordan J. Clark; Rebekah Penrice-Randal; Parul Sharma; Anja Kipar; Xiaofeng Dong; Andrew D. Davidson; Maia Kavanagh Williamson; David A Matthews; Lance Turtle; Tessa Prince; Grant Hughes; Edward I Patterson; Krishanthi Subramaniam; Jo Sharp; Lynn McLaughlin; En-Min Zhou; Joseph D Turner; Amy E Marriott; Stefano Colombo; Shaun Pennington; Giancarlo Biagini; Andrew Owen; Julian Alexander Hiscox; James P Stewart; Jinghe Huang; Auke C Reidinga; Daisy Rusch; Kim CE Sigaloff; Renee A Douma; Lianne de Haan; Egill A Fridgeirsson; Niels C Gritters van de Oever; Roger JMW Rennenberg; Guido van Wingen; Marcel JH Aries; Martijn Beudel; ítalo Karmann Aventurato; Mariana Rabelo de Brito; Marina Koutsodontis Machado Alvim; José Roberto da Silva Junior; Lívia Liviane Damião; Maria Ercilia de Paula Castilho Stefano; Iêda Maria Pereira de Sousa; Elessandra Dias da Rocha; Solange Maria Gonçalves; Luiz Henrique Lopes da Silva; Vanessa Bettini; Brunno Machado de Campos; Guilherme Ludwig; Rosa Maria Mendes Viana; Ronaldo Martins; Andre S. Vieira; José Carlos Alves-Filho; Eurico de Arruda Neto; Adriano Sebollela; Fernando Cendes; Fernando Q Cunha Sr.; André Damásio; Marco Aurélio Ramirez Vinolo; Carolina Demarchi Munhoz; Stevens K Rehen Sr.; Thais Mauad; Amaro Nunes Duarte-Neto; Luiz Fernando Ferraz da Silva; Marisa Dolhnikoff; Paulo Saldiva; Alexandre Todorovic Fabro; Alessandro S Farias; Pedro Manoel M. Moraes-Vieira; José Luiz Proença Módena; Clarissa Lin Yasuda; Marcelo A. Mori; Thiago Mattar Cunha; Daniel Martins-de-Souza.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.334532

ABSTRACT

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2, a recently emerged coronavirus that has rapidly caused a pandemic. Coalescence of a second wave of this virus with seasonal respiratory viruses, particularly influenza virus is a possible global health concern. To investigate this, transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) were first infected with IAV followed by SARS-CoV-2. The host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 only. Infection of mice with each individual virus resulted in a disease phenotype compared to control mice. Although, SARS-CoV-2 RNA synthesis appeared significantly reduced in the sequentially infected mice, these mice had a more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to singly infected or control mice. The sequential infection also exacerbated the extrapulmonary manifestations associated with SARS-CoV-2. This included a more severe encephalitis. Taken together, the data suggest that the concept of "twinfection" is deleterious and mitigation steps should be instituted as part of a comprehensive public health response to the COVID-19 pandemic.


Subject(s)
Lung Diseases , Infections , Encephalitis , Weight Loss , COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.21.214346

ABSTRACT

SARS-CoV-2 originated in animals and is now easily transmitted between people. Sporadic detection of natural cases in animals alongside successful experimental infections of pets, such as cats, ferrets and dogs, raises questions about the susceptibility of animals under natural conditions of pet ownership. Here we report a large-scale study to assess SARS-CoV-2 infection in 817 companion animals living in northern Italy, sampled at a time of frequent human infection. No animals tested PCR positive. However, 3.4% of dogs and 3.9% of cats had measurable SARS-CoV-2 neutralizing antibody titers, with dogs from COVID-19 positive households being significantly more likely to test positive than those from COVID-19 negative households. Understanding risk factors associated with this and their potential to infect other species requires urgent investigation. One Sentence SummarySARS-CoV-2 antibodies in pets from Italy.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.21.108035

ABSTRACT

The scientific community has responded to the COVID-19 pandemic by rapidly undertaking research to find effective strategies to reduce the burden of this disease. Encouragingly, researchers from a diverse array of fields are collectively working towards this goal. Research with infectious SARS-CoV-2 is undertaken in high containment laboratories, however, it is often desirable to work with samples at lower containment levels. To facilitate the transfer of infectious samples from high containment laboratories, we have tested methods commonly used to inactivate virus and prepare the sample for additional experiments. Incubation at 80{degrees}C, and a range of detergents and UV energies were successful at inactivating a high titre of SARS-CoV-2. These protocols can provide a framework for in house inactivation of SARS-CoV-2 in other laboratories, ensuring the safe use of samples in lower containment levels.


Subject(s)
COVID-19
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.15.20066407

ABSTRACT

BackgroundThe COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. MethodsWe tested plasma for COVID (SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). ResultsELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested [≥]10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. ConclusionsCurrently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL